Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Article in English | MEDLINE | ID: mdl-38500290

ABSTRACT

INTRODUCTION: Bee venom has therapeutics and pharmacological properties. Further toxicological studies on animal models are necessary due to the severe allergic reactions caused by this product. METHOD: Here, Caenorhabditis elegans was used as an in vivo toxicity model, while breast cancer cells were used to evaluate the pharmacological benefits. The bee venom utilized in this research was collected from Apis mellifera species found in Northeast Brazil. The cytotoxicity caused by bee venom was measured by MTT assay on MDA-MB-231 and J774 A.1 cells during 24 - 72 hours of exposure. C. elegans at the L4 larval stage were exposed for three hours to M9 buffer or bee venom. Survival, behavioral parameters, reproduction, DAF-16 transcription factor translocation, the expression of superoxide dismutase (SOD), and metabolomics were analyzed. Bee venom suppressed the growth of MDA-MB-231 cancer cells and exhibited cytotoxic effects on macrophages. Also, decreased C. elegans survival impacted its behaviors by decreasing C. elegans feeding behavior, movement, and reproduction. RESULTS: Bee venom did not increase the expression of SOD-3, but it enhanced DAF-16 translocation from the cytoplasm to the nucleus. C. elegans metabolites differed after bee venom exposure, primarily related to aminoacyl- tRNA biosynthesis, glycine, serine and threonine metabolism, and sphingolipid and purine metabolic pathways. Our findings indicate that exposure to bee venom resulted in harmful effects on the cells and animal models examined. CONCLUSION: Thus, due to its potential toxic effect and induction of allergic reactions, using bee venom as a therapeutic approach has been limited. The development of controlled-release drug strategies to improve this natural product's efficacy and safety should be intensified.

2.
3 Biotech ; 13(12): 391, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37953832

ABSTRACT

Clarisia racemosa Ruiz & Pav is a neotropical species found in humid forests from southern Mexico to southern Brazil. There are few studies related to the ethnopharmacological use of C. racemosa. Our objective was to evaluate the hydroalcoholic extract of C. racemosa as a potential antiparasitic agent. For this, we performed in vitro assays against strains of Leishmania amazonensis, Trypanosoma cruzi, Plasmodium falciparum, and Schistosoma mansoni. At the same time, immunomodulatory activity tests were carried out. The results demonstrated that the extract was able to stimulate and activate immune cells. In preliminary antiparasitic tests, structural modifications were observed in the promastigote form of L. amazonensis and in adult worms of S. mansoni. The extract was able to inhibit the growth of trypomastigote form of T. cruzi and finally showed low antiparasitic activity against strains of P. falciparum. It is pioneering work and these results demonstrate that C. racemosa extract is a promising alternative and contributes to the arsenal of possible forms of treatment to combat parasites. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03799-2.

3.
Chem Biodivers ; 20(8): e202300154, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37414744

ABSTRACT

Schistosomiasis affects about 260 million people worldwide and the search for new schistosomicidal compounds is urgent. In this study we evaluated the in vitro effect of barbatic acid against schistosomulae and young worms of Schistosoma mansoni. The barbatic acid was evaluated through the bioassay of motility and mortality, cellular viability and ultrastructural analysis of juvenile stages through Scanning Electron Microscopy. Barbatic acid showed a schistosomicidal effect against schistosomulae and young worms of S. mansoni after 3 h of exposure. At the end of 24 h, barbatic acid showed 100 %, 89.5 %, 52 % and 28.5 % of lethality for schistosomulae at the concentrations of 200, 100, 50 and 25 µM, respectively. For young worms, barbatic acid showed 100 % and 31.7 % of lethality at the concentrations of 200 and 100 µM, respectively. Motility changes were observed at all sublethal concentrations. There was a significant reduction in the viability of young worms after exposure to barbatic acid at 50, 100 and 200 µM. Extensive damage to the schistosomulae and young worm's tegument, was observed from 50 µM. This report provides data showing the schistosomicidal effect of barbatic acid on schistosomulae and young worms of S. mansoni, causing death, motility changes and ultrastructural damage to worms.


Subject(s)
Anthelmintics , Phthalic Acids , Schistosomicides , Animals , Schistosoma mansoni , Anthelmintics/pharmacology , Phthalic Acids/pharmacology , Schistosomicides/pharmacology , Microscopy, Electron, Scanning
4.
J Appl Microbiol ; 134(7)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37437916

ABSTRACT

AIMS: We investigated the putative fungistatic and fungicidal activities of pomegranate sarcotesta lectin (PgTeL) against Cryptococcus neoformans B3501 (serotype D), specifically the ability of PgTeL to inhibit yeast capsule and biofilm formation in this strain. METHODS AND RESULTS: PgTeL showed a minimum inhibitory concentration of 172.0 µg ml-1, at which it did not exhibit a fungicidal effect. PgTeL concentrations of 4.0-256.0 µg ml-1 reduced biofilm biomass by 31.0%-64.0%. Furthermore, 32.0-256.0 µg ml-1 PgTeL decreased the metabolic activity of the biofilm by 32.0%-93.0%. Scanning electron microscopy images clearly revealed disruption of the biofilm matrix. Moreover, PgTeL disrupted preformed biofilms. At concentrations of 8.0-256.0 µg ml-1, PgTeL reduced metabolic activity in C. neoformans by 36.0%-92.0%. However, PgTeL did not inhibit the ability of B3501 cells to form capsules under stress conditions. CONCLUSIONS: PgTeL inhibited biofilm formation and disrupted preformed biofilms, demonstrating its potential for use as an anticryptococcal agent.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Pomegranate , Lectins/pharmacology , Pomegranate/metabolism , Plankton/metabolism , Biofilms , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/metabolism
5.
Microb Pathog ; 182: 106233, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37422173

ABSTRACT

Acinetobacter baumannii, a prominent emerging pathogen, is responsible for persistent and recurrent healthcare-associated infections (HAIs). Its bacterial resistance and virulence factors, such as biofilm formation, contribute to its survival in hospital environments. Combination therapy has proven to be an effective approach for controlling these infections; however, antimicrobial resistance and compound toxicity can hinder antimicrobial efficacy. Numerous in vitro studies have demonstrated the synergistic effect of antimicrobials and natural products against multidrug-resistant (MDR) A. baumannii biofilm. Riparin III, a natural alkamide derived from Aniba riparia (Nees) Mez., possesses various biological activities, including significant antimicrobial potential. Nonetheless, no reports are available on the use of this compound in conjunction with conventional antimicrobials. Hence, this study aimed to investigate the inhibition and eradication of A. baumannii MDR biofilm by combining riparin III and colistin, along with potential ultrastructural changes observed in vitro. Clinical isolates of A. baumannii, known for their robust biofilm production, were inhibited, or eradicated in the presence of the riparin III/colistin combination. Furthermore, the combination resulted in several ultrastructural alterations within the biofilm, such as elongated cells and coccus morphology, partial or complete disruption of the biofilm's extracellular matrix, and cells exhibiting cytoplasmic material extravasation. At the synergistic concentrations, the riparin III/colistin combination exhibited a low hemolytic percentage, ranging from 5.74% to 6.19%, exerting inhibitory and eradicating effects on the A. baumannii biofilm, accompanied by notable ultrastructural changes. These findings suggest its potential as a promising alternative for therapeutic purposes.

6.
Acta Trop ; 245: 106965, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37295486

ABSTRACT

The present work aimed to carry out in vitro biological assays of thiazole compounds against adult worms of Schistosoma mansoni, as well as the in silico determination of pharmacokinetic parameters to predict the oral bioavailability of these compounds. In addition to presenting moderate to low cytotoxicity against mammalian cells, thiazole compounds are not considered hemolytic. All compounds were initially tested at concentrations ranging from 200 to 6.25 µM against adult worms of S. mansoni parasites. The results showed the best activity of PBT2 and PBT5 at a concentration of 200 µM, which caused 100% mortality after 3 h of incubation. While at 6 h of exposure, 100% mortality was observed at the concentration of 100 µM. Subsequent studies with these same compounds allowed classifying PBT5, PBT2, PBT6 and PBT3 compounds, which were considered active and PBT1 and PBT4 compounds, which were considered inactive. In the ultrastructural analysis the compounds PBT2 and PBT5 (200 µM) promoted integumentary changes with exposure of the muscles, formation of integumentary blisters, integuments with abnormal morphology and destruction of tubercles and spicules. Therefore, the compounds PBT2 and PBT5 are promising antiparasitics against S. mansoni.


Subject(s)
Schistosomiasis mansoni , Schistosomicides , Animals , Schistosoma mansoni/ultrastructure , Thiazoles/pharmacology , Thiazoles/therapeutic use , Schistosomicides/pharmacology , Schistosomicides/therapeutic use , Antiparasitic Agents/therapeutic use , Schistosomiasis mansoni/drug therapy , Mammals
7.
Eur J Med Chem ; 254: 115310, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37062170

ABSTRACT

The present work reports the synthesis of a novel series of pyridine-thiazolidinones with anti-Trypanosoma cruzi and leishmanicidal activities (compounds 10-27), derived from 2 or 4-pyridine thiosemicarbazones (1-9). The in vitro assays were performed with Trypanosoma cruzi trypomastigotes and amastigotes, as well as with Leishmania amazonensis promastigotes and amastigotes. The cytotoxicity profile was evaluated using the cell line RAW 264.7. From the 18 pyridine-thiazolidinones, 5 were able to inhibit trypomastigotes. Overall, all compounds inhibited amastigotes, highlighting compounds 15 (0.60 µM), 18 (0.64 µM), 17 (0.81 µM), and 27 (0.89 µM). Compounds 15 and 18 were able to induce parasite cell death through necrosis induction. Analysis by scanning electron microscopy showed that T. cruzi trypomastigotes treated with compounds 15 and 18 induced morphological changes such as shortening, retraction and curvature of the parasite body and leakage of internal content. Regarding the antiparasitic evaluation against Leishmania amazonensis, only compound 27 had a higher selectivity compared to Miltefosine against the amastigote form (IC50 = 5.70 µM). Our results showed that compound 27 presented an antiparasitic activity for both Trypanosoma cruzi and Leishmania amazonensis. After in silico evaluation, it was suggested that the new pyridine-thiazolidinones had an appropriate drug-likeness profile. Our results pointed out a new chemical frame with an anti-Trypanosomatidae profile. The pyridine-thiazolidinones presented here for the first time could be used as a starting point for the development of new antiparasitic agents.


Subject(s)
Chagas Disease , Leishmania mexicana , Trypanocidal Agents , Trypanosoma cruzi , Trypanosomatina , Humans , Structure-Activity Relationship , Chagas Disease/drug therapy , Antiparasitic Agents/pharmacology , Trypanocidal Agents/chemistry
8.
Int J Biol Macromol ; 231: 123339, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36682648

ABSTRACT

The Amazon rainforest is considered the largest tropical timber reserve in the world. The management of native forests in the Amazon is one of the most sensitive geopolitical issues today, given its national and international dimension. In this work, we obtained and characterized physicochemical lignins extracted from branches and leaves of Protium puncticulatum and Scleronema micranthum. In addition, we evaluated in vitro its potential as an antioxidant, cytotoxic agent against animal cells and antiparasitic against promastigotes of Leishmania amazonensis, trypomastigotes of T. cruzi and against Plasmodium falciparum parasites sensitive and resistant to chloroquine. The results showed that the lignins obtained are of the GSH type and have higher levels of guaiacyl units. However, they show structural differences as shown by spectroscopic analysis and radar charts. As for biological activities, they showed antioxidant potential and low cytotoxicity against animal cells. Antileishmanial/trypanocidal assays have shown that lignins can inhibit the growth of promastigotes and trypomastigotes in vitro. The lignins in this study showed low anti-Plasmodium falciparum activity against susceptible strains of Plasmodium falciparum and were able to inhibit the growth of the chloroquine-resistant strain. And were not able to inhibit the growth of Schistosoma mansoni parasites. Finally, lignins proved to be promising excipients in the release of benznidazole. These findings show the potential of these lignins not yet studied to promote different biological activities.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Animals , Antiparasitic Agents/therapeutic use , Lignin/therapeutic use , Excipients , Antioxidants/therapeutic use , Chagas Disease/drug therapy , Chloroquine
9.
J. Health Biol. Sci. (Online) ; 11(1): 1-7, Jan. 2023. tab, ilus
Article in Portuguese | LILACS | ID: biblio-1524423

ABSTRACT

Objetivo: este estudo se propôs a caracterizar o perfil epidemiológico da esporotricose felina no município de São Paulo (SP) no período de 2011 a 2022. Métodos: estudo descritivo dos casos de esporotricose felina registrados entre 2011 e 2022. Foram utilizados dados secundários, provenientes dos bancos de dados da vigilância do município. Resultados: o perfil predominante dos animais é composto por machos, 71,4% (n=2.644), com idade inferior a 4 anos 70,1% (n=1.137) e com livre acesso à rua 51,0% (n=1.348). Foram registrados 811 óbitos, entre os quais foi informado o sexo para 381, sendo estes 77,4% (n=295) machos e 22,6% (n=86) fêmeas. Conclusão: diante dos achados deste estudo, compreende-se que a situação epidemiológica da doença requer ações conjuntas das vigilâncias epidemiológica e ambiental para serem desenvolvidas medidas de prevenção e controle embasadas em uma perspectiva de saúde única.


Objective: this study aimed to characterize the epidemiological profile of feline sporotrichosis in the city of São Paulo (SP) from 2011 to 2022. Methods: this is a descriptive study of feline sporotrichosis cases reported between 2011 and 2022. The data were obtained from a secondary database of the São Paulo Health Surveillance System. Results: the predominant profile of the animals is composed of males 71.4% (n=2,644), under the age of four years old 70.1% (n=1,137), and with free access to streets 51.0% (n=1,348). Furthermore, of the 811 deaths registered, 381 had the gender identified, 77.4% (n=295) were males, and 22.6% (n=86) were females. Conclusion: given the findings of this study, it is understood that the epidemiological situation of the disease requires joint actions by epidemiological and environmental surveillance in order to develop prevention and control measures based on one health perspective.


Subject(s)
Animals , Cats , Sporotrichosis , Health Profile , Zoonoses
10.
Mol Biochem Parasitol ; 252: 111520, 2022 11.
Article in English | MEDLINE | ID: mdl-36122704

ABSTRACT

Schistosomiasis is a neglected disease that affects about 258 million people worldwide. Caused by Schistosoma mansoni, helminth which, in Brazil, it is present on 19 states and capital. Praziquantel (PZQ) treatment presents low efficacy and adverse effects in parasites juvenile stages. Thiosemicarbazones and thiazolidinones are rising as potent chemical groups that have biological activity wide spectrum, and with radical modifications, they may become more effective and selective. Aiming to evaluate the action of these molecules against S. mansoni, JF series thiosemicarbazones and thiazolidinones (LqIT/UFPE) were synthesized: JF30, JF31, JF33, JF34, JF35, JF36, JF38, JF39, JF42 and JF43. Several parameters were evaluated, such as: their cytotoxicity in VERO cells, in vitro schistosomicidal activity for juvenile and adult worms and their action on worms through ultrastructural changes. Cytotoxicity indices ranged from 272 µM to 725 µM. When evaluating mortality rate, adult and juvenile worms showed 100 % mortality rate within 24 h and 48 h, respectively, when exposed to the compounds JF31 and JF43 at a dose of 200 µM. Also, motility, mortality and oviposition parameters were evaluated: JF31 and JF43 presented a score of 0 in 24 h, meaning total absence of movement, whereas no eggs and soft tissue damage were observed under optical microscopy. Through scanning electron microscopy, integumentary alterations caused by the compounds JF31 and JF43 were observed, such as: exposure of the musculature, formation of integumentary bubbles, integuments with abnormal morphology and destruction of tubercles and spikes. The results shoerd that the compound JF31 was 2.39 times more selective for adult worms and JF43 was 3.74 times more selective for juvenile worms. Thus, the compounds JF43 and JF31 are the most promising for presenting schistosomicidal activity of S. mansoni.


Subject(s)
Schistosomiasis mansoni , Schistosomicides , Thiosemicarbazones , Chlorocebus aethiops , Animals , Female , Schistosomicides/pharmacology , Schistosomicides/therapeutic use , Schistosoma mansoni , Thiosemicarbazones/pharmacology , Thiosemicarbazones/therapeutic use , Vero Cells , Praziquantel/pharmacology , Schistosomiasis mansoni/drug therapy
11.
Nanotoxicology ; 16(4): 472-483, 2022 05.
Article in English | MEDLINE | ID: mdl-35848961

ABSTRACT

Magnetic nanoparticles (NPs) are suitable candidates for various medical and biological applications, despite some concerns that they may have negative impacts on human health. In this study, the toxicity effects of magnetic NPs consisting of α"-Fe16N2 captured and bioaccumulated by the nematode Caenorhabditis elegans (C. elegans) in the early larval stage are evaluated. The choice of α"-Fe16N2 NPs is based on their good structural stability when stored in saline solution and high magnetic performance. The uptake and bioaccumulation of α"-Fe16N2 NPs in intestinal cells of C. elegans was evidenced by transmission electron microscopy. After exposure to NPs up to 40 mg mL-1, C. elegans larval development, survival, feeding behavior, defecation cycles, movement and reproduction were monitored. C. elegans survival and other monitored behavioral evolutions do not show significant changes, except for a slight statistical reduction in the reproductive profile. Therefore, the present results are promising and very encouraging for investigations of applications of α"-Fe16N2 NPs in the biomedical area.


Subject(s)
Magnetite Nanoparticles , Nanoparticles , Animals , Caenorhabditis elegans , Humans , Iron/toxicity , Magnetite Nanoparticles/toxicity , Nanoparticles/toxicity , Reproduction , Saline Solution
12.
Acta Trop ; 233: 106572, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35753387

ABSTRACT

Cutaneous leishmaniasis is endemic in Pernambuco. Aiming to determine the vector species of cutaneous leishmaniasis in an endemic area of the Northeast region of Brazil, this study aimed to use the spatial mapping of human cases of CL and correlate with ecological studies of the vectors in the municipality of Timbaúba, Pernambuco, Brazil. Individuals infected with CL were recruited through active search in their homes and clinically and serologically diagnosed during the period from 2018 to 2019. Sandflies were captured with CDC-type light traps in peridomiciliary environments and these were identified at the species level. Females were separated for DNA extraction and subsequent analysis by PCR. The points of collection of phlebotomes and the residences of individuals with lesions were marked with GPS. During the study period, 60 cases of CL were diagnosed. A higher concentration of CL cases was observed in proximity to Atlantic forest remnants confirmed by heat map. A total of 3744 sandflies was captured and five distinct species were identified, with the predominance of Nyssomyia whitmani. From the females separated for the identification of Leishmania braziliensis DNA, a rate of 0.68% of infected sandflies was obtained. It was concluded that cutaneous leishmaniasis continues to be a rural feature of the area. And from this study, it is concluded that Ny. whitmani is the carrier species of CL in the municipality of Timbaúba, Pernambuco. This is due to abundance in catching, specialization of species and PCR positivity for Leishmania braziliensis.


Subject(s)
Leishmania braziliensis , Leishmaniasis, Cutaneous , Psychodidae , Animals , Brazil/epidemiology , Female , Humans , Insect Vectors , Leishmaniasis, Cutaneous/epidemiology
13.
3 Biotech ; 12(5): 109, 2022 May.
Article in English | MEDLINE | ID: mdl-35462951

ABSTRACT

In recent years, lectins have been identified as alternative agents against Aedes aegypti during the aquatic phases of its life cycle. For example, chitin-binding lectin from Myracrodruon urundeuva leaf (MuLL) can function as a larvicide. In this study, we investigated whether MuLL can also act as an ovicide against this insect. Aedes aegypti eggs were incubated with MuLL for 72 h to determine the concentration at which the hatching rate reduces by 50% (EC50). The effects of MuLL on the egg surface structure were evaluated using scanning electron microscopy (SEM), and the possible interaction of MuLL with the internal structures of eggs and embryos was investigated using MuLL-fluorescein isothiocyanate (FITC) conjugate. MuLL acted as an ovicidal agent with an EC50 of 0.88 mg/mL. The SEM analysis revealed that eggs treated with MuLL for 24 and 48 h no longer had tubercles and did not show a well-defined exochorionic network. In addition, deformation and degeneration of the surface were observed after 72 h. Fluorescence microscopy showed that MuLL penetrated the eggs 48 h after incubation and was detected in the upper portion of the embryo's gut. After 72 h, MuLL was observed in the serosal cuticle and digestive tract. In conclusion, MuLL can function as an ovicidal agent against A. aegypti through damage to the surface and internal structures of the eggs.

14.
Int J Biol Macromol ; 193(Pt B): 1799-1812, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34774863

ABSTRACT

In this work, we investigated in vitro the antioxidant, cytotoxic and anti-leishmanial activities of a lignin extracted from the leaves of Morinda citrifolia. Initially, an analysis of the composition of the sheets was performed, then the lignin was obtained by alkaline delignification and characterized by different techniques: elemental analysis, FT-R, UV-vis, HSQC-NMR, thermal analysis, Py-GC/MS and by GPC. The results showed that the leaves had in their composition cellulose (31.29%), hemicellulose (25.01%), lignin (18.34%), extractives (14.39%) and ash (10.03%). The lignin extraction yield was 89.8%. The lignin obtained is of the GSH type with the following contents 79.39%, 13.58% and 7.03% respectively. Furthermore, it is low molecular weight and thermally stable. It had a phenolic content of 93.3 mg GAE/g and low antioxidant activity. In macrophage cytotoxicity assays, it presented a CC50 of 31.0 µg/mL, showing less toxicity than amphotericin B. In assays against the promastigote forms of Leishmania amazonensis, lignin presented an IC50 of 29.56 µg/mL, a less effective concentration than amphotericin B (IC50 = 0.14 µg/mL). However, it was able to promote inhibition of the parasites, a fact confirmed by structural changes. These findings reinforce that M. citrifolia lignin is a promising macromolecule for use as an antiparasitic and antioxidant agent.


Subject(s)
Antioxidants , Antiprotozoal Agents , Cytotoxins , Leishmania/growth & development , Lignin , Morinda/chemistry , Plant Leaves/chemistry , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Cell Line , Cytotoxins/chemistry , Cytotoxins/pharmacology , Drug Evaluation, Preclinical , Lignin/chemistry , Lignin/pharmacology , Mice
15.
Parasitol Res ; 120(12): 4023-4035, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34657981

ABSTRACT

Biomphalaria spp. snails are intermediary hosts of Schistosoma mansoni, etiologic agent of intestinal schistosomiasis, one of the most important neglected tropical diseases. Biomphalaria straminea is an important intermediary host that possess a different phenotype to parasite infection but shows a large geographic distribution and high capacity of new ecologic niche invasion. Our purpose was to characterize for the first time the differentially expressed proteome in B. straminea during two times intervals after primary and secondary exposure to S. mansoni. The hemolymph was collected at 1 and 15 days after primary and secondary exposure of snails to the parasite. Total proteins were extracted and digested with trypsin. LC-MS/MS label-free quantification was performed and analyzed using Maxquant and Perseus software. Proteins were identified and annotated using Blast2GO tools. After 1 day of exposure, most of upregulated proteins are hemoglobin type 2, C and H type lectins, molecules related to cell adhesion, and response to oxidative stress. After 15 days, we found a similar pattern of upregulated proteins but some fibrinogen-related proteins (FREPs) and TEPs homologs were downregulated. Regarding the differentially expressed proteins during secondary response, the principal immune-related proteins upregulated were C and H type lectins, cellular adhesion molecules, biomphalysin, and FREP3. We noted a several upregulated biological processes during both responses that could be the one of the key points of efficacy in the immune response to parasite. Our data suggests different immune mechanisms used by B. straminea snails challenged with S. mansoni.


Subject(s)
Biomphalaria , Schistosomiasis mansoni , Animals , Chromatography, Liquid , Immunologic Memory , Proteomics , Schistosoma mansoni , Tandem Mass Spectrometry
16.
Rev Bras Parasitol Vet ; 30(3): e004821, 2021.
Article in English | MEDLINE | ID: mdl-34259738

ABSTRACT

Canine visceral leishmaniasis (CVL) is a zoonotic disease of high lethality caused by Leishmania infantum in the Americas. In the infected dog, the amastigotes are scarce in blood, especially in the late phase of the disease. This study aimed to report a rare case of L. infantum amastigotes found in neutrophils from peripheral blood of a naturally infected dog in terminal phase of CVL, also describing its clinical status before and after treatment with miltefosine 2%. The dog, which presented as polysymptomatic and with classical signs and symptoms of CVL was submitted to the following tests: Dual Path Platform (DPP) rapid test, ELISA and parasitological examination of peripheral blood. Hematological and biochemical parameters were obtained before and after treatment. All diagnostic tests were positive for CVL. The identification of L. infantum amastigotes inside neutrophils from peripheral blood was confirmed through microscopy, and the species was confirmed by molecular analysis. At the end of the treatment, peripheral parasitemia was not detected, and improvements were observed in clinical and laboratorial parameters. Finally, this atypical finding can be used as example to raise discussions about the real immunological role of neutrophils in late phases of CVL and its clinical/therapeutic implications.


Subject(s)
Dog Diseases , Leishmania infantum , Leishmaniasis, Visceral , Animals , Dog Diseases/diagnosis , Dogs , Enzyme-Linked Immunosorbent Assay/veterinary , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/veterinary , Neutrophils
17.
Epidemiol Serv Saude ; 30(2): e2020520, 2021 05 31.
Article in English, Portuguese | MEDLINE | ID: mdl-34076228

ABSTRACT

OBJECTIVE: To analyze aspects related to schistosomiasis positivity in an area of low prevalence in Brazil. METHODS: This was a cross-sectional study, carried out in the first half of 2020, where we analyzed the proportion of positivity, according to the number of Kato-Katz slides, the diagnostic performance of the test and positivity estimates based on data from the Schistosomiasis Surveillance and Control Program Information System (SISPCE). RESULTS: 2,088 slides from 348 individuals were analyzed, with proportion of positivity of 11.8%, 26.7% and 31.0% for 1, 4 and 6 slides analyzed, respectively. There was excellent agreement (Kappa = 0.91) between the readings of 4 and 6 slides. The SISPCE data was estimated to be underreported by up to 2.1 times. CONCLUSION: Increasing the number of slides increased Kato-Katz positivity, which can contribute to maximizing the control of the disease as a Public Health problem.


Subject(s)
Schistosomiasis mansoni , Schistosomiasis , Animals , Brazil/epidemiology , Cross-Sectional Studies , Feces , Humans , Prevalence , Schistosoma mansoni , Schistosomiasis/epidemiology , Schistosomiasis mansoni/epidemiology , Sensitivity and Specificity
18.
Chem Biol Interact ; 345: 109561, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34174251

ABSTRACT

Neglected diseases are a group of transmissible diseases that occur mostly in countries in tropical climates. Among this group, Chagas disease and leishmaniasis stand out, considered threats to global health. Treatment for these diseases is limited. Therefore, there is a need for new therapies against these diseases. In this sense, our proposal consisted of developing two series of compounds, using a molecular hybridization of the heterocyclic isatin and thiazole. The isatin and thiazole ring are important scaffold for several biological disorders, including antiparasitic ones. Herein, thiazolyl-isatin has been synthesized from respective thiosemicarbazone or phenyl-thiosemicarbazone, being some of these new thiazolyl-isatin toxic for trypomastigotes without affecting macrophages viability. From this series, compounds 2e (IC50 = 4.43 µM), 2j (IC50 = 2.05 µM), 2l (IC50 = 4.12 µM) and 2m (1.72 µM) showed the best anti-T. cruzi activity for trypomastigote form presenting a selectivity index higher than Benznidazole (BZN). Compounds 2j, 2l and 2m were able to induce a significantly labelling compatible with necrosis in trypomastigotes. Analysis by scanning electron microscopy showed that T. cruzi trypomastigote cells treated with the compound 2m from IC50 concentrations, promoted changes in the shape, flagella and surface of body causing of the parasite dead. Concerning leishmanicidal evaluation against L. amazonensis and L. infantum, compounds 2l (IC50 = 7.36 and 7.97 µM, respectively) and 2m (6.17 and 6.04 µM, respectively) showed the best activity for promastigote form, besides showed a higher selectivity than Miltefosine. Thus, compounds 2l and 2m showed dual in vitro trypanosomicidal and leishmanicidal activities. A structural activity relationship study showed that thiazolyl-isatin derivatives from phenyl-thiosemicarbazone (2a-m) were, in general, more active than thiazolyl-isatin derivatives from thiosemicarbazone (1a-g). Crystallography studies revealed a different configuration between series 1a-g and 2a-m. The configuration and spatial arrangement divergent between the two sub-series could explain the improved biological activity profile of 2a-m sub-series.


Subject(s)
Isatin/chemistry , Isatin/pharmacology , Leishmania/drug effects , Thiazoles/chemistry , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Drug Design , Inhibitory Concentration 50 , Structure-Activity Relationship
19.
Chem Biol Interact ; 345: 109514, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34023282

ABSTRACT

Chagas disease causes more deaths in the Americas than any other parasitic disease. Initially confined to the American continent, it is increasingly becoming a global health problem. In fact, it is considered to be an "exotic" disease in Europe, being virtually undiagnosed. Benznidazole, the only drug approved for treatment, effectively treats acute-stage Chagas disease, but its effectiveness for treating indeterminate and chronic stages remains uncertain. Previously, our research group demonstrated that 4-thiazolidinones presented anti-T. cruzi activity including in the in vivo assays in mice, making this fragment appealing for drug development. The present work reports the synthesis and anti-T. cruzi activities of a novel series of 4-thiazolidinones derivatives that resulted in an increased anti-T. cruzi activity in comparison to thiosemicarbazones intermediates. Compounds 2c, 2e, and 3a showed potent inhibition of the trypomastigote form of the parasite at low cytotoxicity concentrations in mouse splenocytes. Besides, all the 2c, 2e, and 3a tested concentrations showed no cytotoxic activity on macrophages cell viability. When macrophages were submitted to T. cruzi infection and treated with 2c and 3a, compounds reduced the release of trypomastigote forms. Results also showed that the increased trypanocidal activity induced by 2c and 3a is independent of nitric oxide release. Flow cytometry assay showed that compound 2e was able to induce necrosis and apoptosis in trypomastigotes. Parasites treated with the compounds 2e, 3a, and 3c presented flagellum shortening, retraction and curvature of the parasite body, and extravasation of the internal content. Together, these data revealed a novel series of 4-thiazolidinones fragment-based compounds with potential effects against T. cruzi and lead-like characteristics.


Subject(s)
Chlorine/chemistry , Drug Design , Thiazolidines/chemical synthesis , Thiazolidines/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Chemistry Techniques, Synthetic , Dose-Response Relationship, Drug , Mice , Structure-Activity Relationship , Thiazolidines/chemistry , Trypanocidal Agents/chemistry
20.
Pest Manag Sci ; 77(6): 2887-2893, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33559956

ABSTRACT

BACKGROUND: Aedes aegypti is a remarkably effective mosquito vector of epidemiologically important arboviral diseases including dengue fever, yellow fever and Zika. The present spread of resistance against pyrethroids, the primary insecticides used for mosquito control, in global populations of this species is of great concern. The voltage-gated sodium channel (VGSC) in the nervous system is the known target site of pyrethroids in insects. Past studies have revealed several amino-acid substitutions in this channel that confer pyrethroid resistance, which are known as knockdown resistance (kdr) mutations. RESULTS: This study investigated a laboratory colony of Ae. aegypti, MCNaeg, established from larvae collected in Rio de Janeiro, Brazil in 2016. The MCNaeg colony showed strong resistance against pyrethroids without laboratory selection. Of the two VGSC gene haplotypes present within this colony, one harbored three known kdr mutations, V410L, V1016I, and F1534C, and the other harbored only the known F1534C mutation. In latter haplotype, we also found novel amino-acid substations including V253F. Previous molecular modeling and electrophysiological studies suggest that this residue serves a pyrethroid-sensing site in the second receptor, PyR2. Our genetical analysis showed that the haplotype harboring V253F and F1534C is associated with equal or slightly stronger resistance than the other triple kdr haplotype to both Type I and Type II pyrethroids. CONCLUSION: The novel substitution V253F is potentially involved in pyrethroid resistance in Ae. aegypti. Further studies are needed to elucidate the role of this substitution in the pyrethroid susceptibility of VGSC. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Aedes , Insecticides , Pyrethrins , Voltage-Gated Sodium Channels , Zika Virus Infection , Zika Virus , Aedes/genetics , Animals , Brazil , Insecticide Resistance/genetics , Insecticides/pharmacology , Mutation , Pyrethrins/pharmacology , Voltage-Gated Sodium Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...